Wafer-scale growth of VO2 thin films using a combinatorial approach

نویسندگان

  • Hai-Tian Zhang
  • Lei Zhang
  • Debangshu Mukherjee
  • Yuan-Xia Zheng
  • Ryan C. Haislmaier
  • Nasim Alem
  • Roman Engel-Herbert
چکیده

Transition metal oxides offer functional properties beyond conventional semiconductors. Bridging the gap between the fundamental research frontier in oxide electronics and their realization in commercial devices demands a wafer-scale growth approach for high-quality transition metal oxide thin films. Such a method requires excellent control over the transition metal valence state to avoid performance deterioration, which has been proved challenging. Here we present a scalable growth approach that enables a precise valence state control. By creating an oxygen activity gradient across the wafer, a continuous valence state library is established to directly identify the optimal growth condition. Single-crystalline VO2 thin films have been grown on wafer scale, exhibiting more than four orders of magnitude change in resistivity across the metal-to-insulator transition. It is demonstrated that 'electronic grade' transition metal oxide films can be realized on a large scale using a combinatorial growth approach, which can be extended to other multivalent oxide systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pulsed laser deposition of VO2 thin films

High quality vanadium dioxide ~VO2! thin films have been successfully deposited by pulsed laser deposition without postannealing on ~0001! and ~101̄0! sapphire substrates. X-ray diffraction reveals that the films are highly oriented with ~010! planes parallel to the surface of the substrate. VO2 thin films on ~0001! and ~101̄0! substrates show semiconductor to metal transistions with electrical r...

متن کامل

Wafer-scale synthesis of thickness-controllable MoS2 films via solution-processing using a dimethylformamide/n-butylamine/2-aminoethanol solvent system.

The wafer-scale synthesis of two-dimensional molybdenum disulfide (MoS2) films, with high layer-controllability and uniformity, remains a significant challenge in the fields of nano and optoelectronics. Here, we report the highly thickness controllable growth of uniform MoS2 thin films on the wafer-scale via a spin-coating route. Formulation of a dimethylformamide-based MoS2 precursor solution ...

متن کامل

Synthesis of vanadium dioxide thin films on conducting oxides and metal–insulator transition characteristics

We report on growth and physical properties of vanadium dioxide (VO2) films on model conducting oxide underlayers (Nb-doped SrTiO3 and RuO2 buffered TiO2 single crystals). The VO2 films, synthesized by rf sputtering, are highly textured as seen from X-ray diffraction. The VO2 film grown on Nb doped SrTiO3 shows over two orders of magnitude metal–insulator transition, while VO2 film on RuO2 buff...

متن کامل

Electrical Switching in Semiconductor-Metal Self-Assembled VO2 Disordered Metamaterial Coatings

As a strongly correlated metal oxide, VO2 inspires several highly technological applications. The challenging reliable wafer-scale synthesis of high quality polycrystalline VO2 coatings is demonstrated on 4" Si taking advantage of the oxidative sintering of chemically vapor deposited VO2 films. This approach results in films with a semiconductor-metal transition (SMT) quality approaching that o...

متن کامل

Metal-insulator transition characteristics of VO2 thin films grown on Ge„100... single crystals

Phase transitions exhibited by correlated oxides could be of potential relevance to the emerging field of oxide electronics. We report on the synthesis of high-quality VO2 thin films grown on single crystal Ge 100 substrates by physical vapor deposition and their metal-insulator transition MIT properties. Thermally triggered MIT is demonstrated with nearly three orders of magnitude resistance c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015